Calculus Quiz 5 SCI-C

Class:
Student Number:
Name:

1. (5 points) \(y = f(x) = \frac{2x^2}{x^2 - 1} \).
 a. Is \(f(x) \) an even or odd function?
 b. Find \(\lim_{x \to \infty} f(x) \).
 c. Find \(\lim_{x \to 1^-} f(x) \).
 d. Find horizontal asymptotes and vertical asymptotes of \(y = f(x) \).

 a. \(f(-x) = \frac{2(-x)^2}{(-x)^2 - 1} = \frac{2x^2}{x^2 - 1} \)
 \(\Rightarrow f(x) \) is an even function.

 b. \(\lim_{x \to \infty} \frac{2x^2}{x^2 - 1} = \lim_{x \to \infty} \frac{2}{1 - \frac{1}{x^2}} = 2 \)

 c. \(\lim_{x \to 1^-} \frac{2x^2}{x^2 - 1} = -\infty \)
 (since the numerator is positive
 and the denominator approaches 0 from the negative side as \(x \to 1^- \))

 d. By (b) and \(\lim_{x \to \infty} \frac{2x^2}{x^2 - 1} = \lim_{x \to \infty} \frac{2}{1 - \frac{1}{x^2}} = 2 \)
 \(\Rightarrow \) the line \(y = 2 \) is a horizontal asymptote.

 By (c) and \(\lim_{x \to 1^+} \frac{2x^2}{x^2 - 1} = \infty \) and
 \(\lim_{x \to 1^-} \frac{2x^2}{x^2 - 1} = -\infty \) and \(\lim_{x \to 1^-} \frac{2x^2}{x^2 - 1} = 0 \)
 \(\Rightarrow \) the lines \(x = 1 \) and \(x = -1 \) are vertical asymptotes.

2. (5 points) Find a function \(f \) such that \(f'(x) = 8x^3 \) and the line \(x + y = 0 \) is tangent to the graph of \(f \).

 \(f'(x) = 8x^3 \) \(\Rightarrow f(x) = 2x^4 + C \)
 \(f'(x) = 8x^3 = -1 \)
 \(\Rightarrow x = -\frac{1}{2} \)

 \(-\frac{1}{2} \) + \(y = 0 \)
 \(\Rightarrow y = \frac{1}{2} \)