考試時間 120 分鐘,題目卷爲兩張紙,共三頁,滿分 120 分。所有題目的答案都請依題號順序依序寫在答案卷上,而是非與填充題必須寫在第一頁。答案卷務必寫學號、姓名,題目卷不必繳回。考試開始 30 分鐘後不得入場,開始 40 分鐘內不得離場。考試期間禁止使用字典、計算機及任何通訊器材,監試人員不得回答任何關於試題的疑問。Questions are to be answered on the answer sheet provided.

是非題 **True or False** (20 points),請答 **T** (True) 或 **F** (False)。每題 2 分。 (不需詳列過程,請依題號順序依序寫在答案卷第一頁上。)

- **1.** If $f(x) = x^2$ and $g(x) = \sqrt{x}$, then $(f \circ g)(x) = (\sqrt{x})^2 = x$. Thus, the domain of $f \circ g$ is $[0, \infty)$.
- **2.** If $f(x) = \sqrt{x}$, then f(x) is differentiable.
- **3.** Let f(x) = |x| and g(x) = x |x|, then f(g(x)) = g(f(x)).
- **4.** If f and g both are odd functions, then f(g(x)) is an even function.
- **5.** $\frac{d}{dx}|x|^4 = 4|x|^3$.
- **6.** If functions f and g are continuous at x = 0, then the composite $f \circ g$ is also continuous at x = 0.
- 7. The derivative of

$$h(x) = \begin{cases} x^2 \sin(1/x), & \text{if } x \neq 0. \\ 0, & \text{if } x = 0. \end{cases}$$

is continuous at x = 0.

8. Suppose that $f(x) = x^2$ and g(x) = |x|. Then the composites $f \circ g$ and $g \circ f$ are both differentiable at x = 0.

(下頁還有試題)

a	The curve	f(x) —	rein	(1/x)	haga	horizontal	asymptote.
9.	i ne curve	T(x) =	$x \sin x$	1/x	nas a	norizontai	asymptote.

10. Given $\sec 0 = 1$ and $\sec \pi = -1$, by the *intermediate value theorem* there exists a number $c \in (0, \pi)$ such that $\sec c = 0$.

填充題 Short answer questions (40 points), 每題 5 分。

(不需詳列過程,僅將答案依題號順序依序寫在答案卷第一頁上即可。)

1. Let f(x) = x - 3, $g(x) = \sqrt{x}$, $h(x) = x^5$, j(x) = 2x. Express $u = \sqrt{x^5 - 3}$ as a composite function involving one or more of f, g, h and j.

Answer : ______.

2. Find $\frac{d^{25}}{dx^{25}} (\cos(2x))$.

Answer : _____.

- **3.** If $\lim_{x\to 0^+} f(x) = A$, $\lim_{x\to 0^-} f(x) = B$. Find $\lim_{x\to 0^-} f(x^4-x^2)$. Answer:
- **4.** Find the slope to the curve

$$f(x) = \begin{cases} \frac{1 - \cos x}{x}, & \text{if } x \neq 0.\\ 0, & \text{if } x = 0. \end{cases}$$

at x = 0. Answer : _____.

5. Find an equation for the line perpendicular to the tangent to the curve $y = x^3 - 4x + 1$ at the point (2,1).

Answer : ______.

6. Find $\lim_{\theta \to \pi/6} \frac{\sin \theta - \frac{1}{2}}{\theta - \frac{\pi}{6}}$.

Answer : ______.

7. Assume that f(0) = 9, f'(0) = -2, f(1) = -3, f'(1) = 1/5. Find the first derivative of the combinations $f(1 - 5 \tan x)$ at x = 0.

Answer : _____.

8. Find f'(x) if it is known that $\frac{d}{dx}[f(2x)] = x^2$.

Answer : _____.

(下頁還有試題)

計算問答證明題 Please show all your work (60 points),每題 10 分,請依題號順序依序寫在答案卷上,可以用中文或英文作答。請詳列計算過程,否則不予計分。需標明題號但不必抄題。

- **1.** (10 points)
 - **a.** (5 points) If f'(0) = -2, find $\lim_{h\to 0} \frac{f(3h) f(-2h)}{h}$.
 - **b.** (5 points) Find $\lim_{x\to 0} \left[(\cos \frac{1}{x})(\sin x) \right]$.
- **2.** (10 points) Find $\frac{d^2y}{dx^2}$ by **implicit differentiation** if $2x^3 3y^2 = 8$.
- 3. (10 points) Coffee is drain(排出) from a conical filter(濾器) into a cylindrical coffeepot at the rate 160 cm³/min. (The volume of the circular cone with base radius r and height h is $V = \frac{1}{3}\pi h r^2$.)
 - a. How fast is the level in the pot rising when the coffee in the cone is 13 cm deep?
 - **b.** How fast is the level in the cone falling then?

- **4.** (10 points) Use the **limit definition** to prove that $\lim_{x\to 1} \sqrt{2x-1} = 1$.
- **5.** (10 points) Find all asymptotes of the graph of $y = \frac{x^2 4}{x 1}$.
- **6.** (10 points) For all values of the constants m and b for which the function

$$f(x) = \begin{cases} \sin x, & \text{if } x < \pi \\ mx + b, & \text{if } x \ge \pi \end{cases}$$

is

- **a.** (5 points) continuous at $x = \pi$.
- **b.** (5 points) differentiable at $x = \pi$.

(試題結束)