管院微積分聯合教學 會考六 Jun 23, 2015

考試時間 120 分鐘,題目卷為兩張紙,共三頁,滿分 120 分。所有題目的答案都請依題號順序依序寫在答案卷上,而是非與填充題必須寫在第一頁。答案卷務必寫學號、姓名,題目卷不必繳回。考試開始 30 分鐘後不得入場,開始 40 分鐘內不得離場。考試期間禁止使用字典、計算機及任何通訊器材,違者成績以零分計算,監試人員不得回答任何關於試題的疑問。Questions are

to be answered on the answer sheet provided.

是非題 **True or False** (20 points),請答 **T** (True)或 **F** (False)。每題 2 分。 (不需 詳列過程,請依題號順序依序寫在答案卷第一頁上。)

- **1.** If f is an integrable odd function, then $\int_{-1}^{1} f(x) dx = 0$.
- **2.** Suppose that X has the exponential density function f with parameter k. If k goes to ∞ , then E(X) tends to 0.

3.
$$\int_{-3\pi/2}^{3\pi/2} \cos(x) dx = 0.$$

- 4. If the internal rate of return of stock A is less than the internal rate of return of stock B, then invest stock B is a better decision.
- 5. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} (x-1)^n$ is the Taylor series of $\ln x$ at x = 0.
- 6. The integral test can be applied to any kind of series.

7. If
$$|r| < 1$$
, then $\sum_{n=1}^{\infty} \frac{1}{r^n}$ diverges.

8.
$$\lim_{n \to \infty} \frac{n}{\sqrt{2n^2 + 1}} = \frac{1}{\sqrt{2}} < 1$$
, so the series $\sum_{n=1}^{\infty} \frac{n}{\sqrt{2n^2 + 1}}$ converges.

- **9.** Let $\sum a_n$, $\sum b_n$, and $\sum c_n$ be series with positive terms. If $\sum a_n$ is divergent and $b_n + c_n \ge a_n$ for all n, then both $\sum b_n$ and $\sum c_n$ are divergent.
- 10. $\lim_{x \to 0} \frac{\cos(x) 1}{x^2} = -\frac{1}{2}.$

(下頁還有試題)

填充題 Short answer questions (40 points), 每題 5分。

(不需詳列過程,僅將答案依題號順序依序寫在答案卷第一頁上即可。)

- 1. Find the particular solution of the differential equation $x\frac{dy}{dx} = \frac{\ln x}{7}$ with the condition y = -2 when x = 1. Answer:______.
- **2.** Evaluate $\lim_{x \to 0} x \cot(x)$. Answer:

3. Find the derivative of the function $f(x) = x^2 \sin(\frac{1}{x})$. Answer:______.

4. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} (2n)!(x-1)^n$. Answer:______.

5. Find the sum of the series $\sum_{n=2}^{\infty} \left[\frac{1}{3^n} - \frac{1}{n(n+1)} \right].$ Answer:_____.

6. Find all positive values of p for which the series $\sum_{n=2}^{\infty} \frac{1}{n^2 (\ln n)^p}$ is convergent. Answer:______.

- 7. Given $\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots$, -1 < x < 1, find the Taylor series and its interval of convergence of $f(x) = \frac{1}{1+x}$ at x = 1. Answer:_____.
- 8. Find the area of the region bounded by the graph of $f(x) = x \cos(x)$, the x-axis, and the lines $x = -\pi$ and $x = \pi$.

Answer:_____.

(下頁還有試題)

計算問答證明題 Please show all your work (60 points),每題 10 分,請依題號順 序依序寫在答案卷上,可以用中文或英文作答。請詳列計算過程,否則不予計分。需 標明題號但不必抄題。

- 1. (10 points) Find the minimum of the function f(x, y, z) = xy + 2yz + 2xz subject to the constraint xyz = 108.
- 2. (10 points) Use the second Taylor polynomial of $f(x) = e^{-2x}$ at x = 0 to approximate $e^{-0.2}$, and find a bound for the error in the approximation.
- **3.** (10 points) The cross section of a drain is a trapezoid, as shown in the accompanying figure. The sides and the bottom of the trapezoid are each 5 ft long. Determine the angle θ such that the drain will have a maximal cross-sectional area.

- 4. (10 points) Of the microprocessors manufactured by a microelectronics firm for use in regulating fuel consumption in automobiles, 1.5% are defective. Let a_n denote the probability of getting at least one defective microprocessor in a random sample of n microprocessors.
 - **a.** Find the formula for a_n .
 - **b.** Evaluate $\lim_{n \to \infty} a_n$.
- 5. (10 points) Suppose that the average wage earner save 9% of her take-home pay and spends the other 91%. Estimate the impact that a proposed \$30 billion tax cut will have on the economy over the long run due to the additional spending generated.
- 6. (10 points) Suppose that the rate of air flow into and out a person's lungs during respiration is $R(t) = 0.6 \sin \frac{\pi t}{2}$ liters per second, where t is the time in seconds. Find an expression for the volume of air V in the person's lung at any time t. Assume the V(0) = 0.

(試題結束)