考試時間 100 分鐘,請盡量依照題號順序將答案寫在答案卷上,不必抄題。試題卷有四面,共8大題。答案卷務必記得寫學號、姓名,試題卷不必繳回。考試開始 20 分鐘後不得入場,開始 40 分鐘前不得離場。為維持機會之平等,考試期間禁止使用字典、計算機及任何通訊器材。

- 1. (20 points) 是非題,請答 T (True)或 F (False)
 - 1.1 $f(x) = \sqrt{1+|x|}$ is an even function.
 - 1.2 $\lim_{x \to 0} \frac{x}{|x|} = 1.$
 - 1.3 If f(x) = g(x) for all real numbers x except for x = 0, then

$$\lim_{x \to 0} f(x) = L \quad \Rightarrow \quad \lim_{x \to 0} g(x) = L$$

- 1.4 If f(x) is continuous at x = 0 then it is differentiable at x = 0.
- 1.5 The average value of |x| on [-1, 1] is $\frac{1}{2}$.
- 1.6 Let f(x) be a continuous function on [a, b] and $F(x) = \int_a^x f(t) dt$ for $x \in [a, b]$, then F(x) is continuous on [a, b].
- 1.7 Since $\sec 0 = 1$ and $\sec \pi = -1$, so by the *intermediate value theorem* there is a number $\xi \in (0, \pi)$ such that $\sec \xi = 0$.
- 1.8 If $\lim_{x\to c} f(x) = 0$, then there must exist a number ξ such that $f(\xi) < 0.001$.
- 1.9 For any continuous function f(x) there is a differentiable function F(x) such that F'(x) = f(x).
- 1.10 Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{for } x \neq 0, \\ 0, & \text{for } x = 0 \end{cases}$$

then f(x) is differentiable for all x.

- 2. (20 points) 選擇題,皆單選,請用大寫字母 A, B, C 或 D 答題
 - 2.1 How many anti-derivatives does the function $\sin^2 x 3x$ have?
 - (A) 0 (B) 1 (C) 2 (D) infinitely many
 - 2.2 Let $y = \sin \frac{x}{2} \cos \frac{x}{2}$, then $\frac{d^{20}y}{dx^{20}} =$
 - (A) $\frac{\sin x}{2}$ (B) $-\frac{\sin x}{2}$ (C) $\frac{\cos x}{2}$ (D) $-\frac{\cos x}{2}$
 - 2.3 If $\lim_{x\to 0} \frac{g(x)-1}{x} = 4$, then $\lim_{x\to 0} g(x) =$
 - (A) 0 (B) 1 (C) 4 (D) ∞
 - 2.4 Which of the following equations is wrong?
 - (A) $\int 2\sin x \cos x \, dx = \sin^2 x + C$
 - (B) $\int 2\sin x \cos x \, dx = -\cos^2 x + C$
 - (C) $\int x \sin x \, dx = \frac{x^2}{2} \sin x + C$
 - (D) $\int x \sin x \, dx = \sin x x \cos x + C$
 - 2.5 Let f(x) be a continuous function on [0,1] and $F(x) = \int_0^x f(t) dt$ for $x \in [0,1]$, which of the following statements is false?
 - (A) $F'(x) = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) dt$ for $x \in (0,1)$.
 - (B) F(x) is the solution of $\frac{dy}{dx} = f(x)$ with initial condition y(0) = 1.
 - (C) $\int_0^1 f(x) dx = F(1) F(0)$.
 - (D) F'(x) = f(x) for $x \in (0, 1)$.
 - 2.6 What is the slope of the curve $y^2 + x^2 = y^4 2x$ at the point (-2, 1)?
 - (A) -1 (B) 0 (C) 1 (D) 2

(後面還有)

2.7 What is the value of

$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + x} \right)$$

- (A) $-\frac{1}{2}$ (B) 0 (C) $\frac{1}{2}$ (D) ∞
- 2.8 If f'(0) = 1 then $\lim_{h \to 0} \frac{f(2h) f(0)}{h} = ?$
 - (A) 0 (B) $\frac{1}{2}$ (C) 1 (D) 2
- 2.9 What is the maximum value of |f''(x)| for the function $f(x) = x^3(3x^2 10)$ on the closed interval [0,1]?
 - (A) 0 (B) 7 (C) $\frac{40}{\sqrt{3}}$ (D) $20\sqrt{3}$
- 2.10 Which of the following statements is correct?
 - (A) If f'(c) = 0 then f(c) is a local maximum
 - (B) If f'(c) = 0 then f(c) is a local minimum
 - (C) If f'(c) > 0 then f(c) is not a local maximum
 - (D) If f'(c) does not exist, then f(c) is not a local maximum
- **3.** (10 points) Show that for any numbers a and b, the inequality

$$|\cos a - \cos b| < |a - b|$$

is true.

4. (10 points) Show that

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{for } x \neq 0, \\ 0, & \text{otherwise} \end{cases}$$

is differentiable at x = 0 and find f'(0).

5. (10 points) Choose a linearization of $f(x) = \sqrt[3]{x}$ with center x = a, where a is near but is not 8.5. Find such a center a at which the function and its derivative are easy to evaluate. State the linearization and the center.

- **6.** (10 points) The region enclosed by the x-axis and the parabola $y = 3x x^2$ is revolved about the line x = -1 to generate the shape of a solid. Compute the volume of the solid.
- 7. (10 points) Suppose that f is the differentiable function shown in the accompanying graph (附圖) and the position (位置) at time t seconds of a particle (粒子) moving along a coordinate axis (沿著一個坐標軸移動) is

$$s(t) = \int_0^t f(x) \, dx$$

[從課本剪貼一張圖]

Answer the following questions and give your reasons (説明理由):

- (a) What is the particle's velocity at time t = 5?
- (b) Is the acceleration of the particle at time t=5 positive or negative?
- (c) Approximately when is the acceleration zero?
- (d) Is s(9) positive or negative?
- (e) At what time between $0 \le t \le 9$ does s(t) have its largest value?
- **8.** (10 points) Let f(x) be an integrable function, show that

$$\int_0^{\pi} x f(\sin x) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin x) dx$$

[Hint: Use the substitution $u = \pi - x$.]