是非题 (15 points), 请答 T (True) 或 F (False)

1. Let \(u, v \) and \(w \) be space vectors, then \((u \times v) \times w = u \times (v \times w) \).

2. The plane curve \(r(t) = (\ln \sec t)i + tj \) is smooth for \(-\pi/2 < t < \pi/2 \).

3. The velocity and acceleration vectors \(v \) and \(a \) are always orthogonal to each other for the helix \(r = \sin t i + tj + \cos t k \) for \(t \geq 0 \).

4. If the partial derivatives \(f_x \) and \(f_y \) of a function \(f(x, y) \) are continuous throughout an open region \(R \), then \(f(x, y) \) is continuous on \(R \).

5. \(\lim_{(x, y) \to (0, 0)} \frac{x^2}{x^2 + y^2} = 0. \)

填充题 (55 points), [A]-[K] 每格 5 分

1. Find the torsion \(\tau \) for the plane curve \(r(t) = (\ln \sec t)i + tj \) for \(-\pi/2 < t < \pi/2 \). [A]

2. Find the arc length of the plane curve \(r(t) = (\cos t + t \sin t)i + (\sin t - t \cos t)j \) for \(\pi/2 \leq t \leq \pi \). [B]

3. Let \(s \) be the arc length parameter of the plane curve \(r(t) = (\cos t + t \sin t)i + (\sin t - t \cos t)j \) for \(\pi/2 \leq t \leq \pi \). Find the derivative \(ds/dt \). [C]

4. Let \(u \) and \(v \) be nonzero space vectors. Use \(u \) and \(v \) to describe a vector that is always orthogonal to both \(u + v \) and \(u - v \). [D]

5. Find the distance from the point \((0, 0, 0)\) to the line \(x = 5 + 3t \), \(y = 5 + 4t \), \(z = -3 - 5t \). [E]

(背面還有)
6. The surface on the right is the graph of
\[z = \frac{xy(x^2 - y^2)}{x^2 + y^2}. \]
Which of the following best represents the level curves of \(z \)? \([F] \)

\[\text{a.} \quad \text{b.} \quad \text{c.} \]

p.973, #14 \quad p.973, #15 \quad p.973, #18

7. Sketch the graph (named *dimpled limaçon*) of the equation \(r = \frac{3}{2} + \cos \theta \) in polar coordinates. \([G] \)

8. How many points of intersection are there for the pair of curves \(r^2 = \sqrt{2} \sin \theta \) and \(r^2 = \sqrt{2} \cos \theta \) in polar coordinates? \([H] \)

9. Find the value of \(\partial x / \partial z \) at the point \((1, -1, -3) \) if the equation
\[xz + y \ln x - x^2 + 4 = 0 \]
defines \(x \) as a function of the two independent variables \(y \) and \(z \) and the partial derivative exists. \([I] \)

10. Find the smallest number \(\delta \) such that
\[|(x, y) - (0, 0)| < \delta \Rightarrow |f(x, y) - f(0, 0)| < 0.01 \]
where \(f(x, y) = x^2 + y^2 \). \([J] \)

11. Given the fact that
\[1 - \frac{x^2 y^2}{3} < \frac{\tan^{-1} xy}{xy} < 1, \]
find
\[\lim_{(x,y) \to (0,0)} \frac{\tan^{-1} xy}{xy} = [K]. \]
以下为计算或问答题，请在考试卷上尽量依序作答，可以用中文或英文作答。请详细计算过程，否则不予计分。需标明题号但不必抄题。

1. (10 points) Find the unit tangent vector T, unit normal vector N and curvature κ for the plane curve $\mathbf{r}(t) = (\ln \sec t) \mathbf{i} + t \mathbf{j}$ for $-\pi/2 < t < \pi/2$.

2. (10 points) Find the linearization $L(x, y)$ of

$$f(x, y) = x^2 - xy + \frac{1}{2}y^2 + 3$$

at the point $(3, 2)$. Let the approximation error be $E(x, y) = f(x, y) - L(x, y)$, find the smallest theoretical upper bound for $|E(x, y)|$ over the rectangle

$$R : |x - 3| \leq 0.1, \quad |y - 2| \leq 0.1.$$

3. (10 points) Among all the points on the graph of $z = 10 - x^2 - y^2$ that lie above the plane $x + 2y + 3z = 0$, find the point farthest from the plane. And find the distance from that point to the plane.

4. (10 points) Is there a direction \mathbf{u} in which the rate of change of the temperature function $T(x, y, z) = 2xy - yz$ at $P(1, -1, 1)$ equals -3 (that is, $D_u T(1, -1, 1) = -3$)? If there is, find it. If there is not, give reasons for your answer.

5. (10 points) Let $T = g(x, y)$ be the temperature at the point (x, y) on the ellipse

$$x = 2\sqrt{2}\cos t, \quad y = \sqrt{2}\sin t, \quad 0 \leq t \leq 2\pi.$$

Suppose that

$$\frac{\partial T}{\partial x} = y, \quad \frac{\partial T}{\partial y} = x.$$

Locate the maximum and minimum temperatures on the ellipse by examining dT/dt and d^2T/dt^2.

3