微積分學科教學 先修班 段考二 Dec 2, 2008

考試時間 120 分鐘，試題共十二題，滿分 120 分。賭在考覈卷上以中文或英文
盡量依序作答，請詳列計算過程，否則不予計分。題標明題號但不必抄
題。考覈卷務必寫學號、姓名，試題不必繳回。

1. (10 points) Find the area of the surface generated by revolving the curve \(r^2 = \cos 2\theta \)
 about the x-axis.

2. (10 points) Which of the following are not always true? For each case, give a
counter-example.
 a. \(|u| = \sqrt{u \cdot u} \) b. \(u \cdot u = |u| \) c. \(u \times 0 = 0 \) d. \(u \times (-u) = 0 \)
 e. \(u \times v = v \times u \) f. \(u \times (v + w) = u \times v + u \times w \)
 g. \((u \times v) \cdot v = 0 \) h. \((u \times v) \cdot w = u \cdot (v \times w) \)

3. (10 points) Find the curvature \(\kappa \) of the helix \(\mathbf{r} = a \cos t \mathbf{i} + a \sin t \mathbf{j} + bt \mathbf{k} \) where
 \(a, b > 0 \). What is the largest value \(\kappa \) can have for a given value of \(b \)?

4. (10 points) An object of mass \(m \) travels along the parabola \(y = x^2 \) with a constant
 speed of 10 units/sec. What is the force on the object due to its acceleration at
 \((0, 0)\) and at \((\sqrt{2}, 2)\)? Write your answers in terms of \(\mathbf{i} \) and \(\mathbf{j} \).

5. (10 points) Find the value of \(\partial z / \partial x \) at the point \((1, 1, 1)\) if the equation

 \[xy + z^3 x - 2yz = 0 \]

 defines \(z \) as a function of the two independent variables \(x \) and \(y \). Then find \(\partial x / \partial z \) at
 the same point if the same equation defines \(x \) as a function of the two independent
 variables \(y \) and \(z \).

6. (10 points) In the following problems, find the derivative of the function at \(P \) in
 the direction of \(\mathbf{w} \):
 a. \(f(x, y) = 2xy - 3y^2, \ P(5, 5), \ \mathbf{w} = 4\mathbf{i} + 3\mathbf{j} \).
 b. \(g(x, y, z) = \cos xy + e^{yz} + \ln xz, \ P(1, 0, \frac{1}{2}), \ \mathbf{w} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k} \).

7. (10 points) Find the linearization \(L(x, y) \) of the function

 \[f(x, y) = x^2 - 3xy + 5 \]
at $P(2,1)$. Then find an upper bound for the magnitude $|E(x, y)|$ of the error in the approximation $f(x, y) \approx L(x, y)$ over the rectangle

$$R : \quad |x - 2| \leq 0.1, \quad |y - 1| \leq 0.1.$$

The error satisfies

$$|E(x, y)| \leq \frac{1}{2} M (|x - x_0| + |y - y_0|)^2$$

if M is any upper bound for the values of $|f_{xx}|$, $|f_{xy}|$ and $|f_{yy}|$ on R.

8. (10 points) Let $T = g(x, y)$ be the temperature at the point (x, y) on the ellipse

$$x = 2\sqrt{2} \cos t, \quad y = \sqrt{2} \sin t, \quad 0 \leq t \leq 2\pi$$

and suppose that

$$\frac{\partial T}{\partial x} = y \quad \text{and} \quad \frac{\partial T}{\partial y} = x.$$

a. Locate the maximum temperatures on the ellipse by examining dT/dt and d^2T/dt^2.

b. Suppose that $T = xy - 2$, find the maximum values of T on the ellipse.

9. (10 points) Find the critical point of

$$f(x, y) = xy + 2x - \ln x^2 y$$

in the open first quadrant $(x > 0, y > 0)$ and show that f takes on a minimum there. Remember that the Hessian of f is

$$\begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix}$$

10. (10 points) Find the largest product xyz the positive numbers x, y and z can have if they satisfy the equation $x + y + z^2 = 16$.

11. (10 points) 写出以下概念的定义：

 a. $f(x, y)$ is continuous at the point (x_0, y_0).

 b. $\frac{\partial f}{\partial x}\bigg|_{(x_0, y_0)}$

 c. The point (x_0, y_0) is a critical point of the function $f(x, y)$ in a region R.

12. (10 points) In the following graphs, 0–9 show level curves for the functions graphed in a–j. Match each set of curves with the appropriate function.