1. If you are given both the doubling time and the growth constant of a quantity that increases exponentially, then you can determine the initial amount.

2. If \(k > 0 \), then all solutions of \(y' = -k(y-b) \) approach the same limit as \(t \to \infty \).

3. If \(f(x) = 2^x \), then \(f'(x) = x2^{x-1} \).

4. We may use L'Hopital’s Rule to get \(\lim_{x \to 1} \frac{x^2 + 1}{2x + 1} = \lim_{x \to 1} \frac{2x}{2} = 1 \).

5. Let \(P(x)/Q(x) \) be a proper rational function, where \(Q(x) \) factors as a product of distinct linear factors \((x - a_i) \). Then \(\int \frac{P(x)}{Q(x)} \, dx \) is a sum of logarithmic terms \(A_i \ln |(x - a_i)| \) for some constants \(A_i \).

6. The Present Value of \(N \) dollars received at time \(T \) is the amount you would have to invest today in order to receive \(N \) dollars at time \(T \).

7. If \(f(x) = x^2 \) then the average value of \(f \) on \([0,2]\) is \(4/3 \).

8. \(f(x) = (\ln x)^2 \) grows faster than \(g(x) = \sqrt{x} \) as \(x \to \infty \).

9. The integral \(\pi \int_a^b [f(x) - g(x)]^2 \, dx \) expresses the volume of the solid obtained by rotating the area between \(y = f(x) \) and \(y = g(x) \) over \([a,b]\) around the \(x \)-axis. (Assume \(f(x) \geq g(x) \geq 0 \))

10. If \(f(x) \) is strictly increasing, then \(f^{-1}(x) \) is strictly increasing.

(下頁還有試題)
1. Evaluate \(\int \frac{\cos 2x}{(1 + \sin 2x)^2} \, dx \). Answer :

2. Find \(\lim_{x \to 0} \left(\cos \frac{1}{x} \right) \left(\sin x \right) \). Answer :

3. Find the area between the graph of \(y = \sin x \) and \(y = 1 - \cos x \) over the interval \(-\frac{\pi}{2} \leq x \leq 0 \). Answer :

4. Let \(g(x) \) be the inverse of \(f(x) = 2x^3 + 3x + 3 \). Find \(g'(8) \).

Answer :

5. Evaluate \(\lim_{x \to \infty} \left(\frac{x}{x + 1} \right)^x \). Answer :

6. Find \(\lim_{x \to 0} \frac{1}{3x^2} \int_{x^2}^{0} \sin \left(t + \frac{\pi}{2} \right) \, dt \). Answer :

7. Use Integration by Parts to evaluate \(\int e^x \sin x \, dx \). Answer :

8. Evaluate \(\int_0^1 e^{\sqrt{x}} \, dx \). Answer :

(下頁還有試題)
1. (10 points) Evaluate the limit.
 a. \(\lim_{x \to 0} \left(\cot x - \frac{1}{x} \right) \).
 b. \(\lim_{x \to 0} x \sin x. \)

2. (10 points) Find the volume of the solid obtained by rotating region enclosed by
 \(x = 0, y = 4 \) and \(y = x^2 + 1 \) about the \(x \)-axis and the \(y \)-axis.

3. (10 points) Evaluate the integral.
 a. \(\int \frac{1}{(x^2 + 2)^2} \, dx. \)
 b. \(\int \frac{4 - x}{x(x^2 + 2)^2} \, dx. \)

4. (10 points) Find the tangent line to the curve
 \[x^2 \cos^2 y = \sin y \]
 at the point \((0, \pi)\).

5. (10 points) Let \(f(x) = x^{1/x} \) in the domain \(\{ x : x > 0 \} \).
 a. Calculate \(\lim_{x \to 0^+} f(x) \) and \(\lim_{x \to \infty} f(x). \)
 b. Find the minimum value of \(f(x) \) on \((0, \infty)\).

6. (10 points) Find the following integrals respectively.
 a. \(\int \cos^3(\pi \theta) \sin^4(\pi \theta) \, d\theta. \)
 b. \(\int \frac{1}{\sqrt{x^2 - 4x + 8}} \, dx. \)